a
    hDf@                  
   @   s*  d dl Z d dlZd dlmZ d dlZd dlmZ d dlm	Z	 ddl
mZmZ ddlmZmZmZmZ ddlmZmZ dd	lmZmZmZ dd
lmZmZ g dZedgdgddddd ZedgddgeedddddgeedddddgdgddddddddddZG dd deeeZdS )    N)Real)interpolate)	spearmanr   )'_inplace_contiguous_isotonic_regression_make_unique)BaseEstimatorRegressorMixinTransformerMixin_fit_context)check_arraycheck_consistent_length)Interval
StrOptionsvalidate_params)_check_sample_weightcheck_is_fitted)check_increasingisotonic_regressionIsotonicRegressionz
array-like)xyTZprefer_skip_nested_validationc           	      C   s   t | |\}}|dk}|dvrt| dkrdtd| d|   }dtt| d  }t|d|  }t|d|  }t|t|krt	d |S )	a7  Determine whether y is monotonically correlated with x.

    y is found increasing or decreasing with respect to x based on a Spearman
    correlation test.

    Parameters
    ----------
    x : array-like of shape (n_samples,)
            Training data.

    y : array-like of shape (n_samples,)
        Training target.

    Returns
    -------
    increasing_bool : boolean
        Whether the relationship is increasing or decreasing.

    Notes
    -----
    The Spearman correlation coefficient is estimated from the data, and the
    sign of the resulting estimate is used as the result.

    In the event that the 95% confidence interval based on Fisher transform
    spans zero, a warning is raised.

    References
    ----------
    Fisher transformation. Wikipedia.
    https://en.wikipedia.org/wiki/Fisher_transformation

    Examples
    --------
    >>> from sklearn.isotonic import check_increasing
    >>> x, y = [1, 2, 3, 4, 5], [2, 4, 6, 8, 10]
    >>> check_increasing(x, y)
    True
    >>> y = [10, 8, 6, 4, 2]
    >>> check_increasing(x, y)
    False
    r   )g            ?   g      ?r   r   g\(\?zwConfidence interval of the Spearman correlation coefficient spans zero. Determination of ``increasing`` may be suspect.)
r   lenmathlogsqrttanhnpsignwarningswarn)	r   r   rho_Zincreasing_boolFZF_seZrho_0Zrho_1 r'   ]/nfs/NAS7/SABIOD/METHODE/ermites/ermites_venv/lib/python3.9/site-packages/sklearn/isotonic.pyr      s    3r   bothclosedboolean)r   sample_weighty_miny_max
increasingr-   r.   r/   r0   c                C   s   |rt jdd nt jddd }t| ddt jt jgd} t j| | | jd} t|| | jdd}t || }t	| | |dus|dur|du rt j
 }|du rt j
}t | |||  | | S )	a0  Solve the isotonic regression model.

    Read more in the :ref:`User Guide <isotonic>`.

    Parameters
    ----------
    y : array-like of shape (n_samples,)
        The data.

    sample_weight : array-like of shape (n_samples,), default=None
        Weights on each point of the regression.
        If None, weight is set to 1 (equal weights).

    y_min : float, default=None
        Lower bound on the lowest predicted value (the minimum value may
        still be higher). If not set, defaults to -inf.

    y_max : float, default=None
        Upper bound on the highest predicted value (the maximum may still be
        lower). If not set, defaults to +inf.

    increasing : bool, default=True
        Whether to compute ``y_`` is increasing (if set to True) or decreasing
        (if set to False).

    Returns
    -------
    y_ : ndarray of shape (n_samples,)
        Isotonic fit of y.

    References
    ----------
    "Active set algorithms for isotonic regression; A unifying framework"
    by Michael J. Best and Nilotpal Chakravarti, section 3.

    Examples
    --------
    >>> from sklearn.isotonic import isotonic_regression
    >>> isotonic_regression([5, 3, 1, 2, 8, 10, 7, 9, 6, 4])
    array([2.75   , 2.75   , 2.75   , 2.75   , 7.33...,
           7.33..., 7.33..., 7.33..., 7.33..., 7.33...])
    NFr   )	ensure_2d
input_namedtyper5   T)r5   copy)r    Zs_r   float64float32arrayr5   r   Zascontiguousarrayr   infclip)r   r-   r.   r/   r0   orderr'   r'   r(   r   c   s    7"
r   c                       s   e Zd ZU dZeedddddgeedddddgdedhgeh dgdZee	d	< ddd
ddddZ
dd Zdd Zd%ddZed
dd&ddZdd Zdd Zdd Zd'ddZ fdd Z fd!d"Zd#d$ Z  ZS )(r   a  Isotonic regression model.

    Read more in the :ref:`User Guide <isotonic>`.

    .. versionadded:: 0.13

    Parameters
    ----------
    y_min : float, default=None
        Lower bound on the lowest predicted value (the minimum value may
        still be higher). If not set, defaults to -inf.

    y_max : float, default=None
        Upper bound on the highest predicted value (the maximum may still be
        lower). If not set, defaults to +inf.

    increasing : bool or 'auto', default=True
        Determines whether the predictions should be constrained to increase
        or decrease with `X`. 'auto' will decide based on the Spearman
        correlation estimate's sign.

    out_of_bounds : {'nan', 'clip', 'raise'}, default='nan'
        Handles how `X` values outside of the training domain are handled
        during prediction.

        - 'nan', predictions will be NaN.
        - 'clip', predictions will be set to the value corresponding to
          the nearest train interval endpoint.
        - 'raise', a `ValueError` is raised.

    Attributes
    ----------
    X_min_ : float
        Minimum value of input array `X_` for left bound.

    X_max_ : float
        Maximum value of input array `X_` for right bound.

    X_thresholds_ : ndarray of shape (n_thresholds,)
        Unique ascending `X` values used to interpolate
        the y = f(X) monotonic function.

        .. versionadded:: 0.24

    y_thresholds_ : ndarray of shape (n_thresholds,)
        De-duplicated `y` values suitable to interpolate the y = f(X)
        monotonic function.

        .. versionadded:: 0.24

    f_ : function
        The stepwise interpolating function that covers the input domain ``X``.

    increasing_ : bool
        Inferred value for ``increasing``.

    See Also
    --------
    sklearn.linear_model.LinearRegression : Ordinary least squares Linear
        Regression.
    sklearn.ensemble.HistGradientBoostingRegressor : Gradient boosting that
        is a non-parametric model accepting monotonicity constraints.
    isotonic_regression : Function to solve the isotonic regression model.

    Notes
    -----
    Ties are broken using the secondary method from de Leeuw, 1977.

    References
    ----------
    Isotonic Median Regression: A Linear Programming Approach
    Nilotpal Chakravarti
    Mathematics of Operations Research
    Vol. 14, No. 2 (May, 1989), pp. 303-308

    Isotone Optimization in R : Pool-Adjacent-Violators
    Algorithm (PAVA) and Active Set Methods
    de Leeuw, Hornik, Mair
    Journal of Statistical Software 2009

    Correctness of Kruskal's algorithms for monotone regression with ties
    de Leeuw, Psychometrica, 1977

    Examples
    --------
    >>> from sklearn.datasets import make_regression
    >>> from sklearn.isotonic import IsotonicRegression
    >>> X, y = make_regression(n_samples=10, n_features=1, random_state=41)
    >>> iso_reg = IsotonicRegression().fit(X, y)
    >>> iso_reg.predict([.1, .2])
    array([1.8628..., 3.7256...])
    Nr)   r*   r,   auto>   r<   nanraiser.   r/   r0   out_of_bounds_parameter_constraintsTr?   c                C   s   || _ || _|| _|| _d S NrA   )selfr.   r/   r0   rB   r'   r'   r(   __init__  s    zIsotonicRegression.__init__c                 C   s2   |j dks.|j dkr"|jd dks.d}t|d S )Nr      zKIsotonic regression input X should be a 1d array or 2d array with 1 feature)ndimshape
ValueError)rE   Xmsgr'   r'   r(   _check_input_data_shape  s    "z*IsotonicRegression._check_input_data_shapec                    s>   | j dk}t dkr& fdd| _ntj| d|d| _dS )zBuild the f_ interp1d function.r@   r   c                    s     | jS rD   )repeatrI   )r   r   r'   r(   <lambda>$      z-IsotonicRegression._build_f.<locals>.<lambda>Zlinear)kindbounds_errorN)rB   r   f_r   Zinterp1d)rE   rK   r   rS   r'   rO   r(   _build_f  s    
zIsotonicRegression._build_fc           
   	      sV  |  | |d}| jdkr,t||| _n| j| _t|||jd}|dk}|| || ||   }}}t||f  fdd|||fD \}}}t	|||\}}}|}t
||| j| j| jd}t|t| | _| _|rJtjt|ftd}	tt|dd |d	d
 t|dd |dd	 |	dd< ||	 ||	 fS ||fS d	S )z Build the y_ IsotonicRegression.r2   r>   r6   r   c                    s   g | ]}|  qS r'   r'   ).0r:   r=   r'   r(   
<listcomp><  rQ   z/IsotonicRegression._build_y.<locals>.<listcomp>r1   r   NrG   )rM   reshaper0   r   Zincreasing_r   r5   r    Zlexsortr   r   r.   r/   minmaxX_min_X_max_Zonesr   bool
logical_or	not_equal)
rE   rK   r   r-   Ztrim_duplicatesmaskZunique_XZunique_yZunique_sample_weightZ	keep_datar'   rW   r(   _build_y*  s6    


	4zIsotonicRegression._build_yr   c                 C   s~   t ddd}t|fdtjtjgd|}t|fd|jd|}t||| | |||\}}|| | _| _	| 
|| | S )a  Fit the model using X, y as training data.

        Parameters
        ----------
        X : array-like of shape (n_samples,) or (n_samples, 1)
            Training data.

            .. versionchanged:: 0.24
               Also accepts 2d array with 1 feature.

        y : array-like of shape (n_samples,)
            Training target.

        sample_weight : array-like of shape (n_samples,), default=None
            Weights. If set to None, all weights will be set to 1 (equal
            weights).

        Returns
        -------
        self : object
            Returns an instance of self.

        Notes
        -----
        X is stored for future use, as :meth:`transform` needs X to interpolate
        new input data.
        F)Zaccept_sparser3   rK   )r4   r5   r   )dictr   r    r8   r9   r5   r   rc   X_thresholds_y_thresholds_rU   )rE   rK   r   r-   Zcheck_paramsr'   r'   r(   fit[  s    zIsotonicRegression.fitc                 C   sr   t | dr| jj}ntj}t||dd}| | |d}| jdkrXt	|| j
| j}| |}||j}|S )a  `_transform` is called by both `transform` and `predict` methods.

        Since `transform` is wrapped to output arrays of specific types (e.g.
        NumPy arrays, pandas DataFrame), we cannot make `predict` call `transform`
        directly.

        The above behaviour could be changed in the future, if we decide to output
        other type of arrays when calling `predict`.
        re   F)r5   r3   r2   r<   )hasattrre   r5   r    r8   r   rM   rZ   rB   r<   r]   r^   rT   Zastype)rE   Tr5   resr'   r'   r(   
_transform  s    






zIsotonicRegression._transformc                 C   s
   |  |S )a  Transform new data by linear interpolation.

        Parameters
        ----------
        T : array-like of shape (n_samples,) or (n_samples, 1)
            Data to transform.

            .. versionchanged:: 0.24
               Also accepts 2d array with 1 feature.

        Returns
        -------
        y_pred : ndarray of shape (n_samples,)
            The transformed data.
        rk   rE   ri   r'   r'   r(   	transform  s    zIsotonicRegression.transformc                 C   s
   |  |S )a%  Predict new data by linear interpolation.

        Parameters
        ----------
        T : array-like of shape (n_samples,) or (n_samples, 1)
            Data to transform.

        Returns
        -------
        y_pred : ndarray of shape (n_samples,)
            Transformed data.
        rl   rm   r'   r'   r(   predict  s    zIsotonicRegression.predictc                 C   s,   t | d | jj }tj| dgtdS )aK  Get output feature names for transformation.

        Parameters
        ----------
        input_features : array-like of str or None, default=None
            Ignored.

        Returns
        -------
        feature_names_out : ndarray of str objects
            An ndarray with one string i.e. ["isotonicregression0"].
        rT   0r6   )r   	__class____name__lowerr    Zasarrayobject)rE   Zinput_features
class_namer'   r'   r(   get_feature_names_out  s    
z(IsotonicRegression.get_feature_names_outc                    s   t   }|dd |S )z0Pickle-protocol - return state of the estimator.rT   N)super__getstate__poprE   staterq   r'   r(   rx     s    
zIsotonicRegression.__getstate__c                    s4   t  | t| dr0t| dr0| | j| j dS )znPickle-protocol - set state of the estimator.

        We need to rebuild the interpolation function.
        re   rf   N)rw   __setstate__rh   rU   re   rf   rz   r|   r'   r(   r}     s    zIsotonicRegression.__setstate__c                 C   s
   ddgiS )NZX_typesZ1darrayr'   )rE   r'   r'   r(   
_more_tags  s    zIsotonicRegression._more_tags)T)N)N)rr   
__module____qualname____doc__r   r   r   rC   rd   __annotations__rF   rM   rU   rc   r   rg   rk   rn   ro   rv   rx   r}   r~   __classcell__r'   r'   r|   r(   r      s&   
^
11
	r   ) r   r"   Znumbersr   numpyr    Zscipyr   Zscipy.statsr   Z	_isotonicr   r   baser   r	   r
   r   utilsr   r   Zutils._param_validationr   r   r   Zutils.validationr   r   __all__r   r   r   r'   r'   r'   r(   <module>   s<   
E>