a
    ϶Df                     @   sV   d Z ddlmZmZmZ ddlmZmZmZ ddl	m
Z
 dddZdd	 Zd
d ZdS )z1Gosper's algorithm for hypergeometric summation.     )SDummysymbols)Polyparallel_poly_from_exprfactor)is_sequenceTc                 C   sH  t | |f|ddd\\}}}| |  }}| |  }	}
|j||	  }}td}t|| |||jd}||
|}t	|
  }t	|D ]}|jr|dk r|| qt|D ]X}||
|
 }||}|
|| }
td|d D ]}||| 9 } qq||}|s>| }|
 }
| }||
|fS )a`  
    Compute the Gosper's normal form of ``f`` and ``g``.

    Explanation
    ===========

    Given relatively prime univariate polynomials ``f`` and ``g``,
    rewrite their quotient to a normal form defined as follows:

    .. math::
        \frac{f(n)}{g(n)} = Z \cdot \frac{A(n) C(n+1)}{B(n) C(n)}

    where ``Z`` is an arbitrary constant and ``A``, ``B``, ``C`` are
    monic polynomials in ``n`` with the following properties:

    1. `\gcd(A(n), B(n+h)) = 1 \forall h \in \mathbb{N}`
    2. `\gcd(B(n), C(n+1)) = 1`
    3. `\gcd(A(n), C(n)) = 1`

    This normal form, or rational factorization in other words, is a
    crucial step in Gosper's algorithm and in solving of difference
    equations. It can be also used to decide if two hypergeometric
    terms are similar or not.

    This procedure will return a tuple containing elements of this
    factorization in the form ``(Z*A, B, C)``.

    Examples
    ========

    >>> from sympy.concrete.gosper import gosper_normal
    >>> from sympy.abc import n

    >>> gosper_normal(4*n+5, 2*(4*n+1)*(2*n+3), n, polys=False)
    (1/4, n + 3/2, n + 1/4)

    T)field	extensionhdomainr      )r   LCZmonicZoner   r   r   Z	resultantZcomposesetZground_rootskeys
is_IntegerremovesortedgcdshiftZquorangeZ
mul_groundas_expr)fgnZpolyspqoptaAbBCZr   DRrootsridj r,   b/nfs/NAS7/SABIOD/METHODE/ermites/ermites_venv/lib/python3.9/site-packages/sympy/concrete/gosper.pygosper_normal   s2    &

r.   c                 C   s  ddl m} || |}|du r"dS | \}}t|||\}}}|d}t| }	t| }
t| }|	|
ks| | kr|t|	|
 h}nH|	s||	 d tj	h}n0||	 d |
|	d |
|	d  |  h}t|D ]}|jr|dk r|| q|sdS t|}td|d  td}| j| }t|||d}||d ||  | }dd	lm} || |}|du rdS | |}|D ]}||vr||d}q|jrdS | | |  S dS )
a&  
    Compute Gosper's hypergeometric term for ``f``.

    Explanation
    ===========

    Suppose ``f`` is a hypergeometric term such that:

    .. math::
        s_n = \sum_{k=0}^{n-1} f_k

    and `f_k` does not depend on `n`. Returns a hypergeometric
    term `g_n` such that `g_{n+1} - g_n = f_n`.

    Examples
    ========

    >>> from sympy.concrete.gosper import gosper_term
    >>> from sympy import factorial
    >>> from sympy.abc import n

    >>> gosper_term((4*n + 1)*factorial(n)/factorial(2*n + 1), n)
    (-n - 1/2)/(n + 1/4)

    r   )	hypersimpNr   zc:%s)clsr   )solve)Zsympy.simplifyr/   Zas_numer_denomr.   r   r   Zdegreer   maxZZeroZnthr   r   r   r   r   Z
get_domainZinjectr   Zsympy.solvers.solversr2   coeffsr   subsis_zero)r   r   r/   r(   r   r   r    r"   r#   NMKr%   r*   r4   r   xHr2   ZsolutionZcoeffr,   r,   r-   gosper_termS   sH    

0

r<   c                 C   s   d}t |r|\}}}nd}t| |}|du r2dS |r@| | }nn| |d  ||| | || }|tju rz(| |d  ||| | || }W n ty   d}Y n0 t|S )aB  
    Gosper's hypergeometric summation algorithm.

    Explanation
    ===========

    Given a hypergeometric term ``f`` such that:

    .. math ::
        s_n = \sum_{k=0}^{n-1} f_k

    and `f(n)` does not depend on `n`, returns `g_{n} - g(0)` where
    `g_{n+1} - g_n = f_n`, or ``None`` if `s_n` cannot be expressed
    in closed form as a sum of hypergeometric terms.

    Examples
    ========

    >>> from sympy.concrete.gosper import gosper_sum
    >>> from sympy import factorial
    >>> from sympy.abc import n, k

    >>> f = (4*k + 1)*factorial(k)/factorial(2*k + 1)
    >>> gosper_sum(f, (k, 0, n))
    (-factorial(n) + 2*factorial(2*n + 1))/factorial(2*n + 1)
    >>> _.subs(n, 2) == sum(f.subs(k, i) for i in [0, 1, 2])
    True
    >>> gosper_sum(f, (k, 3, n))
    (-60*factorial(n) + factorial(2*n + 1))/(60*factorial(2*n + 1))
    >>> _.subs(n, 5) == sum(f.subs(k, i) for i in [3, 4, 5])
    True

    References
    ==========

    .. [1] Marko Petkovsek, Herbert S. Wilf, Doron Zeilberger, A = B,
           AK Peters, Ltd., Wellesley, MA, USA, 1997, pp. 73--100

    FTNr   )r   r<   r5   r   NaNlimitNotImplementedErrorr   )r   kZ
indefiniter   r!   r   resultr,   r,   r-   
gosper_sum   s     (

$
(
rB   N)T)__doc__Z
sympy.corer   r   r   Zsympy.polysr   r   r   Zsympy.utilities.iterablesr   r.   r<   rB   r,   r,   r,   r-   <module>   s   
KQ