a
    ޶Df                     @   sH   d Z ddlmZ ddlmZ ddlmZ ddlmZ eddd Z	dS )	zZ
This module implements the Residue function and related tools for working
with residues.
    )Mul)S)sympify)timethisresiduec                 C   s   ddl m} ddlm} t| } |dkr8| ||| } dD ],}| j||d}||rd| dkr< qjq<||	 |}|j
r|j}n|g}tj}|D ]V}	|	|\}
}t| }|tj|fv s|jr|jjstd| |d| kr||
7 }q|S )a  
    Finds the residue of ``expr`` at the point x=x0.

    The residue is defined as the coefficient of ``1/(x-x0)`` in the power series
    expansion about ``x=x0``.

    Examples
    ========

    >>> from sympy import Symbol, residue, sin
    >>> x = Symbol("x")
    >>> residue(1/x, x, 0)
    1
    >>> residue(1/x**2, x, 0)
    0
    >>> residue(2/sin(x), x, 0)
    2

    This function is essential for the Residue Theorem [1].

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Residue_theorem
    r   )Order)collect)r                      )nzterm of unexpected form: %sr	   )Zsympy.series.orderr   Zsympy.simplify.radsimpr   r   subsZnseriesZhasZgetnZremoveOZis_Addargsr   ZZeroZas_coeff_mulr   ZOneZis_PowexpZ
is_IntegerNotImplementedError)exprxZx0r   r   r   sr   resargcm r   b/nfs/NAS7/SABIOD/METHODE/ermites/ermites_venv/lib/python3.9/site-packages/sympy/series/residues.pyr      s,    '
N)
__doc__Zsympy.core.mulr   Zsympy.core.singletonr   Zsympy.core.sympifyr   Zsympy.utilities.timeutilsr   r   r   r   r   r   <module>   s   