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What type of acoustic signals are emitted by marine mammals ?
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Jiang, J., et al,. (2019). Study of the relationship between pilot whale (Globicephala melas) behaviour and the ambiguity function of its sounds. Applied Acoustics, 146, 31-37.



Everything together: huge Cocktail party !
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Main motivations from our bioacoustic works
(from 2000...)

Given some collected underwater acoustic data in a passive way (mostly
unsupervised), we are working (since decades) on these 5 different tasks:

1 - Detection : Is there at least one animal surrounding the sonobuoy ?

2 - Classification: What species have been detected ?

3 - Sequence modeling : What mammals are trying to say ? (communication

understanding)

4 - Tracking : Where mammals are ?

5 - Optimal control/Reinforcement Learning: Where to deploy our sonobuoy ?
(to maximize the last four tasks performances)

——Jpp | Automatic tool to output biopopulation indicators

A common denominator for all these tasks: we went from signal processing/statistical
modeling to some (full) machine learning (ML)/artificial intelligence (AI) solutions....
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Underwater acoustic channel

ri(t) = (g(s(t) * hi(t) + n(t)) * a;(t) + b(t)

source signal (calls, clicks, ...)
propagation/scattering equivalent transfer function

Very complex and

hydrophone transfer function noisy signal




Just to give an idea of the channel complexity

The sound propagation involves many physical aspects : reflexion, refraction, diffraction,

back-scattering, etc... and depends a lot of parameters: frequency, bathymetry, pressure,
temperature, soil regularity, etc.. e
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Using AI in bioacoustic : what was (and still is) the more
challenging ?

e We started with just hundreds of examples in total: highly unbalanced and with
a lot of label noise

Train model

prediction on
new data &
human validation

e Starting with mostly unsupervised techniques
e took years to have acceptable results



From signal processing to statistical learning (< 2013)

e At least for tasks 1-2, from 2006-2007 => more datasets available (with partial labeling),
e we started to work on (mostly) unsupervised ML technics to produce latent representations

z = fo(l(r; 3))

where | can be typically a TF representation (STFT, MELcep, scalogram, etc..) with fixed (8 hyper-
parameter and @ is the trained non-supervised representation. Among them:
e clustering/Bag Of ..
GMM
sparse coding+dictionary learning
Fisher vectors
elc...
Can be considered of a first trained hybrid learned representation
Improved a lot performances for tasks 1-2



From 2013 for tasks 1-2

The IA’'s tsunami began. Better latent representations are obtained with modern NN
architectures (CNN, RNN, Unet, Transfomer, etc...). Key points were:

e Huge effort in labeling (partially) databases

e Better optimization gradient based solutions (Adam, autodiff, eftc...),

e Transfer learning, self-supervised learning, active learning technics

e Regularization by data augmentation (noise, transform, efc..), dedicated layers

Whales detection/classification? with low-power CNN based architectures
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[1] Paul Best, Automated Detection and Classification of Cetacean Acoustic Signals, PhD Thesis, 2022
[2] Paul Best and al, Temporal evolution of the Mediterranean fin whale song, Scientific Report, 2022



e Birds classification® (TFR + preprocessing + YoLo V12)
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For tasks 1-2, job is (almost) done !

Take home message:

e Performances for tasks 1-2 are now quiet good (> 85% Acc for most datasets)

e More and more sequences are automatically extracted, analysed and labelled
(> [10K-300K] detections per inference session)

e In practice, for tasks 1-2, fine-tuned YOLO Vx.. reaches ~SOTA even in cocktail
party

e In most of the case, no really need cumbersome ultra advanced IA arsenal
( low-energy embedded system incompatible)



Why Al also for tasks 4-5 ?

For task 4, with sonobuoy/hardware developpements we increased the :

e number of hydrophones (up to 5)

e frequency sampling (up to 512 kHz)

e sensitivity/SNR
more robust/accurate TDOA estimators BUT CRLB shows poor range estimators from
TDOA/TOA measurements. - hyperboloids

1- direct localization approach : from TDOAs —Jp» )A(k = f_l (’7A' k) i/r\]/te'rsrithijolr_]LS
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Sequential nonlinear filtering for MultiTarget Tracking

2- sequential tracking approach : given a sequence of TDOA (or doppler,angle,range, etc).

from localization ﬁgf = f_l(?,i) . ]/?\(Xmﬂ, Ce ,/T\k) to tracking
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Main difficulty in MTT is the (combinatorial) assignment problem between measures and
targets => (P)MHT, JPDAF, Bayesian filter®, ect..

[5] J Jang, Bayesian Detection and Tracking of Odontocetes in 3-D from Their Echolocation Clicks, arXiv preprint arXiv:2210.12318



Coupling Al and MultiTarget Tracking

One way to overcome combinatory : train model robust TDOA/DOA/range/angle estimators®
(even direct positioning) from sound events with builtin source separation’
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New framework : Multi-Target Tracking with Transformer
3 - With Transformer like we can train directly (acoustic) sequences to (trajectories) sequences
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Passive Acoustic Tracking with Transformer
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What the representation must learn via Transformer ?

Answer: the underlying source separation problem (animals, echoes, etc..)




We need a dataset dedicated to PAT !!!!

e Whatever tracking with 1/2/3 approach, we need ground truth data with
acoustic data (A) and animal’s trajectories (T) to train models.

e Few datasets are available with all these informations together.
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e We need a digital twin/serious game of marine mammals to generate

realistic data



SeGaMas - Generator -

We started to build a complete serious game (L. Dantin 2025-) divided in two parts :
generator & trainers. The generator has to:
e generate realistic mammals trajectories (cinematic, behavior, ROI, weather, food, multiple
animals, etc...)
e generate realistic source emissions
e model sound propagation and sea noise characteristics
e model sonobuoy geometry and sensor characteristics

Scenario Sound. sensor r(t)
builder pr°|$|a%at|'°" Model |
g 33 G5 meta(t):
position,
emission,id
, etfc..
Generator

With SeGaMas generator, the goal is not only to generate realistic acoustic signals but also all
important associated meta-data/labels for tasks 2-3-4-5



r(t)
meta(t):
position,
emission,id
, etfc..

SeGaMas - Training models
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L(U)=min(E,[ ), det(cov(x,|Z,,,(U)))]}

|

Sensor’s
location

SeGaMas - Generator + Trainers

For task 5 , thanks to all generated trajectories and associated sound events & meta labels, we
can imagine find the best sensor’s location minimizing such loss
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L(U) can be optimized by stochastic optimization technics or via RL (agent = sonobuoy)
Would be interesting to compare both way to solve the corresponding problem
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